Saliency Based Framework for Facial Expression Recognition
نویسندگان
چکیده
This article proposes a novel framework for the recognition of six universal facial expressions. The framework is based on three set of features extracted from the face image: entropy, brightness and local binary pattern. First, saliency maps are obtained by state-of-the-art saliency detection algorithm i.e. “frequency-tuned salient region detection”. The idea is to use saliency maps to find appropriate weights or values for extracted features (i.e. brightness and entropy). To validate the performance of saliency detection algorithm against human visual system, we have performed a visual experiment. Eye movements of 15 subjects were recorded with an eye-tracker in free viewing conditions as they watch a collection of 54 videos selected from Cohn-Kanade facial expression database. Results of the visual experiment provided the evidence that obtained saliency maps conforms well with human fixations data. Finally, evidence of the proposed framework’s performance is exhibited through satisfactory classification results on Cohn-Kanade database, FG-NET FEED database and Dartmouth database of children’s faces.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملFacial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017